11-5a Trigonometric Ratios

Other Things We Know About Right Triangles

$$a^2 + b^2 = c^2$$

Label the hypotenuse (h), adjacent side (a) and opposite (o) given the marked reference angle A or θ .

Today we want to investigate the ratios between the pairs of sides of right triangles with angles of different sizes. We remember from Chapter 3 the vocabulary word ratio. Today we will use a ratio to

Compare the lengths of sides of

The cool thing is.... Over 2000 years ago the Babylonians observed the relationship between an angle and the sides of a right triangle. They began using these ratios frequently and gave them special names.

$$\frac{Sin}{A} = \frac{opposite}{hypotenuse}$$

$$\frac{Cos}{A}$$

ost students have used the acronym SOH CAH TOA to remember these ratios. But you make up a saying for yourself!

Let's Try Some Practice!

Don't Forget to Label Your Triangle with H, O, and A

$$\sin S = \frac{O}{H} = \frac{8}{17}$$

$$\tan S = \frac{O}{A} = \frac{8}{15}$$

$$\cos M = \frac{A}{H} = \frac{8}{17}$$

$$\sin M = \frac{O}{H} = \frac{15}{17}$$

In ABC, the measure of $\angle B = 90^{\circ}$, AC = 50, AB = 48, and BC = 14.

Determine the Trig Ratio needed based on the information and reference angle given.

"rite the acronym used for these trig functions.

Use $\triangle ABC$ to find the trig ratio to represent each angle. [Example: $\tan A = \frac{40}{9}$]

1. $\sin A =$

- $2. \cos A =$
- 3. tan B =

4. $\sin B =$

Notice we never find the sin, cos, and tan of the right angle! 5.

$$\sin 37^{\circ} =$$

$$\cos 53^{\circ} =$$

Find the letter of the angle that completes the equation.

$$\tan _{--} = \frac{36}{77}$$

$$\sin _{--} = \frac{77}{85}$$

$$\cos \underline{\hspace{1cm}} = \frac{77}{85} \qquad \qquad \cos \underline{\hspace{1cm}} = \frac{36}{85}$$

$$\cos = \frac{36}{85}$$